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Abstract: Deregulation of microRNA (miRNA) promotes carcinogenesis, as these molecules can act as oncogenes or tu-

mor suppressor genes. Here we provide an overview of miRNA biology, discuss the most recent findings on miRNA and 

cancer development/progression, and report on how tumor-related miRNAs (oncomirs) are being used to develop novel 

cancer specific therapeutic approaches. 
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INTRODUCTION 

 The discovery in viruses, plants and animals of small 
non-coding RNA molecules called microRNA (miRNA) that 
mediates RNA interference has opened a new era in our un-
derstanding of the control of gene expression [1, 2]. The lat-
est version of miRBase (release 11.0, April 2008 [3]) has 
annotated 678 miRNA sequences in the human genome and 
this number is expected to double as more miRNAs are 
awaiting experimental validation. Based on their sequences, 
miRNAs are predicted to negatively target up to one-third of 
human messenger RNA (mRNA) [4]. Because base-pairing 
with the mRNA 3' untranslated region (3' UTR) is generally 
imperfect, a single miRNA may target over 200 transcripts 
simultaneously. Therefore, regulation of miRNA itself (e.g., 
at the epigenetic level) may well be a potent, albeit indirect, 
way to control simultaneously numerous genes [5]. In the 
present work, we briefly describe the biogenesis and function 
of miRNAs, review their role in tumor biology and report on 
how these molecules are being exploited as molecular targets 
for novel therapeutic approaches to fight cancer. 

miRNA BIOGENESIS AND FUNCTION 

 miRNAs are endogenously produced RNA molecules of 
about 18-25 nucleotides (nt) in length. With the exception of 
those within the Alu repeats transcribed by polymerase III 
(Pol III) [6], most miRNA genes are derived from primary 
miRNA transcripts (pri-miRNA) produced by Pol II and con-
taining a 5' cap and a poly(A) tail [7]. The pri-miRNA is 
cleaved within the nucleus by a multiprotein complex called 
Microprocessor, which is composed of the RNAse III en-
zyme Drosha and the double-stranded RNA-binding domain 
(dsRBD) protein DGCR8/Pasha into an about 70-nt long 
hairpin precursor known as pre-miRNA (Fig. 1). Next, the 
pre-miRNA is exported into the cytoplasm by Exportin-5 via
a Ran-GTP-dependent mechanism. The pre-miRNA is fur-
ther cleaved into the mature approximately 22-nt long  
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miRNA:miRNA* duplex by an RNAse III enzyme, Dicer, in 
association with its partners, TRBP/Loquacious and PACT 
in human cells. Subsequently, an RNA-induced silencing 
complex called RISC is assembled with Argonaute-2 (Ago2, 
a component with RNase catalytic function) and other not 
fully characterized proteins [8]. The miRNA strand is then 
selectively incorporated into RISC and guides the complex 
specifically to its mRNA targets through base-pairing inter-
action. miRNAs downregulate the expression of their target 
genes in two ways [2, 4, 5] depending upon the complemen-
tarity between them: A) most miRNAs bind imperfectly to 
their target sequence and inhibit protein translation; B) by 
contrast miRNAs with perfect complementarity to the target 
sequence induce the cleavage and degradation of the tran-
script. In particular, efficient miRNA-guided translational 
repression requires an m

7
G-cap as well as a poly(A) tail [9]. 

Recently, the mechanism by which miRNA ribonucleopro-
tein complexes (miRNP) that are bound to the 3' UTR of a 
target mRNA interfere with translational initiation has been 
discovered by some investigators who identified a motif 
(MC) within the Mid domain of Ago proteins, which bears 
significant similarity to the m

7
G cap-binding domain of 

eIF4E, an essential translation initiation factor: in this ex-
perimental model, the Ago proteins compete with eIF4E for 
cap binding and thus repress the translational initiation [10].  

miRNAs AND CANCER BIOLOGY 

 Cancer is a multigenic disease characterized by uncon-
trolled cell proliferation, resistance to apoptosis, loss of dif-
ferentiation and ability to invade tissues and metastasize. 
Cells possess many safeguard mechanisms to ensure that all 
molecular mechanisms potentially underlying malignant 
behavior are under control both during development and in 
the adult body. These regulatory pathways/circuits are based 
on the switch on or switch off of genes coding for proteins 
that directly mediates the physiological functions. Dysregu-
lation of these genes, which are referred to as tumor-
suppressor genes and oncogenes, is believed to represent the 
"primum movens" in tumor development and progression 
and is the main focus of preclinical cancer research [11]. 
Until few years ago, tumor suppressor genes and oncogenes 
were believed to function only by being first transcribed 
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from DNA into RNA, and are then translated into protein to 
exert their effects. Recent evidence indicates that small non-
protein-coding miRNAs also play a key role in cancer biol-
ogy by acting as tumor suppressors and oncogenes [12]: 
these cancer-related miRNAs have been named oncomirs 
[13-15] (although some Authors prefer to use this name to 
indicate oncogenic miRNA only). 

 Despite the fact that the biology of tumor related  
miRNAs has only begun to be investigated, a relatively large 
body of data is already available on this subject. Although a 
comprehensive list of tumor related miRNAs and their bio-
logical effects is beyond the scope of this review (for such a 
list, visit www.mmmp.org [16]), we will describe some of 
the most significant examples to underscore the relevance of 
these molecules as cancer targets (Table 1).  

Tumor Suppressor miRNAs 

 The first indication of miRNAs as tumor suppressors 
came from the observation that patients diagnosed with  
B-cell chronic lymphocytic leukemia have frequent deletions 
or downregulation of mir-15a and mir-16-1 located at 
chromosome 13q14.3 [17]. A follow-up study demonstrated 
that miR-15a and miR-16-1 negatively regulate the anti-
apoptotic protein BCL2 [18], thus potentially acting as tumor 
suppressor genes. Some other miRNAs have also been 
shown to function as tumor suppressor genes. Among them, 
the let-7 family (which includes let-7a-1, let-7a-2, let-7a-3, 
let-7b, let-7c, let-7d, let-7e, let-7f-1, let-7f-2, let-7g, and  
let-7i) is downregulated in ovarian carcinoma [19], lung can-
cer [20] and breast carcinoma stem cells [21]; this miRNA 
family has been found to negatively regulate tumor-
promoting factors such as RAS [22], IMP-1 [23] and 
HMGA2 [23, 24]. Similarly, mir-143 and mir-145, which 
exhibit decreased abundance in colorectal carcinoma [25] 

cervical cancer [26] and B-cell malignancies [27], inhibit cell 
proliferation [28], likely by controlling the expression of 
ERK5 [27, 29]. However, recent evidence suggests that 
miRNA physiology can be highly complex and members of a 
miRNA family can behave very differently. For instance, 
while the other let-7 family members have been so far asso-
ciated with tumor suppressive functions, in ovarian carci-
noma let-7a-3 gene hypermethylation (and thus silencing) is 
associated with better prognosis and lower insulin-like 
growth factor-2 (IGF2) expression [30]. Moreover, the let-
7a-3 gene is heavily methylated in normal human tissues but 
hypomethylated in some lung adenocarcinomas and in hu-
man lung cancer cells let-7a-3 gene hypomethylation increa-
ses let-7a-3 expression and results in enhanced tumor pheno-
types and oncogenic changes in transcription profiles [31]. 

Oncogenic miRNAs 

 Other miRNAs can function as oncogenes. mir-155 is 
remarkably overexpressed and linked to tumorigenesis in 
lymphomas [32-35] and breast cancer [36], likely in coopera-
tion with MYC, while mir-372 and mir-373 have been impli-
cated as oncogenes in testicular germ cell tumors [37]. 
Upregulation of mir-21 has been reported in glioblastomas 
[38] and breast cancer [36], where it exerts an anti-apoptotic 
function [38, 39]. Moreover, mir-21 inhibits the expression 
of tumor suppressor genes such as tropomyosin-1 (TPM1) 
[40] and phosphatase and tensin homolog (PTEN) [41]. The 
mir-17-92 cluster (mir-17-5p, mir-17-3p, mir-18a, mir-19a, 
mir-20a, mir-19b-1 and mir-92-1) has been found upregu-
lated in 65% of B-cell lymphomas and its overexpression 
expedited the development of malignant lymphomas in a 
transplantation mouse model [42]. As regards the mechanism 
of action, preclinical models have demonstrated that  
miRNAs from this cluster function cooperatively as onco- 

Fig. (1). Biogenesis of microRNA (see text for details). 
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Table 1. Selected Cancer-Related microRNA and their Proven mRNA Targets

microRNA Target Tumor Ref. 

let-7 family RAS Lung cancer [22] 

 RAS Colon cancer [106] 

 RAS Breast cancer [21] 

 HMGA2 Breast cancer [21] 

 C-MYC Colon cancer [106] 

let-7a Integrin beta (3) Melanoma [107] 

 C-MYC Burkitt lymphoma [82] 

let-7a-3 IGF2 Ovarian cancer [30] 

let-7b CDK4 Melanoma [83] 

 Cyclin D1 Melanoma [83] 

let-7g K-RAS Lung cancer [84] 

mir-7 EGFR, AKT Glioblastoma [108] 

mir-10b HOXD10 Brest cancer [109] 

mir-15a Bcl2 Chronic lymphocytic leukemia [110] 

mir-16-1 Bcl2 Chronic lymphocytic leukemia [110] 

mir-17-92 cluster  Tsp1, CTGF Colon cancer [43] 

 E2F1 HeLa cells, human fibroblasts [44] 

mir-21 PDCD4 Breast cancer [111] 

 TPM1 Breast cancer [40] 

 Maspin Breast cancer [112] 

 NFIB HL-60 cells [113] 

 Bcl2 Breast cancer [39] 

 RECK, TIMP3  Glioma [114] 

 PTEN Hepatocellular cancer [41] 

mir-25 E2F, p21, BIM Gastric cancer [115] 

mir-27a ZBTB10 Breast cancer [116] 

 RYBP/DEDAF Breast cancer [56] 

mir-29a FHIT, WWOX Lung cancer [117] 

mir-29b FHIT, WWOX Lung cancer [117] 

 MCL1 Cholangiocarcinoma [118] 

mir-34a E2F3 Neuroblastoma [119] 

 Bcl2, MYCN Neuroblastoma [86] 

mir-93 E2F, p21, BIM Gastric cancer [115] 

mir-106b p21/CDKN1A Brest, colon kidney, gastric, lung 

cancer 

[120] 

 E2F, p21, BIM Gastric cancer [115] 

mir-122a cyclin G1 Hepatocellular carcinoma [121] 
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(Table 1. Contd….) 

microRNA Target Tumor Ref. 

mir-125a ERK1/2, AKT, ERBB2/3 Breast cancer [122] 

mir-125b ERK1/2, AKT, ERB2/3 Breast cancer [122] 

 Bak1 Prostate cancer [123] 

 Akt Hepatocellular carcinoma [124] 

mir-126 Crk Lung cancer [85] 

mir-127 BCL6 Bladder cancer, colon cancer, em-

bryonic carcinoma, cervical cancer, 

pancreatic cancer, lymphomas, 

breast cancer 

[93] 

mir-137 MITF Melanoma [125] 

mir-143 ERK5 B-cell malignacies [27] 

 ERK5 Colon cancer [29] 

mir-145 ERK5 B-cell malignacies [27] 

mir-146 NfKb Breast cancer [88] 

mir-155 TP53INP1 Pancreatic cancer [126] 

mir-200c E-cadherin Pancreatic, colorectal, breast cancer [127] 

mir-203 ABL1 Hematopoietic malignacies [95] 

mir-210 E2F3 Ovarian cancer [128] 

mir-214 PTEN Ovarian cancer [129] 

mir-221 p27, p57 Hepatocellular carcinoma [130] 

 p27 Thyroid carcinoma [131] 

 p27, c-KIT Melanoma [79] 

mir-222 p27, c-KIT Melanoma [79] 

 p27 Prostate carcinoma [132] 

 p27 Thyroid carcinoma [133] 

mir-372 LATS2 Testicular germ cell tumors [37] 

mir-373 LATS2 Testicular germ cell tumors [37] 

mir-378 SUFU, FUS-1 Glioma [134] 

mir-451 MDR/ABCB1 Breast cancer [89] 

mir-520c CD44 Breast cancer [135] 

genes, possibly by targeting pro-apoptotic factors that are 
activated in response to MYC overexpression: when the 
brakes of the apoptotic pathway are removed, MYC can  
induce cells to proliferate uncontrollably, which results in 
cancer. The oncogenic function of the mir-17-92 cluster is 
further supported by the fact that its members can promote 
tumor angiogenesis (by inhibiting the expression of anti-
angiogenic factors thrombospondin-1 [Tsp1] and connective 
tissue growth factor [CTGF]) [43] and are upregulated in 
both hematological and solid tumors. Nevertheless, as above 
mentioned for tumor suppressor miRNAs, the relationship 

between putatively oncogenic miRNAs and cancer biology 
does not always appears univocal. As a matter of fact, in a 
study conducted on a human B-cell line that overexpresses 
MYC [44], investigators showed that MYC induces the  
expression of the mir-17-92 cluster and that, in turn, this 
cluster inhibits the expression of E2F1 (without affecting 
mRNA abundance, which is a hallmark of miRNA-mediated 
gene repression), a MYC target that controls the transition 
from G1 to S phase of the cell cycle by regulating genes that 
are involved in DNA replication, cell division and apoptosis 
[45]. Therefore, a model is proposed in which MYC-
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mediated cell growth is tightly regulated by the mir-17-92 
cluster: in the presence of MYC, miRNAs of the mir-17-92 
cluster limit the activity of E2F1 and dampen the prolifera-
tive effects of MYC by breaking the positive feedback loop 
between MYC and E2F1. In this context the mir-17-92 clus-
ter would function as a tumour suppressor, which is in con-
trast to the above reported findings. However, it has also 
been reported that although E2F1 drives cellular prolifera-
tion, when E2F1 expression levels cross a certain threshold, 
excessive levels of this protein induce apoptosis [45]. There-
fore, the negative regulation of E2F1 by miRNAs of the mir-
17-92 cluster might function to block the apoptotic activity 
of E2F1 and stimulate MYC-mediated cell proliferation, a 
model that would explain the apparently conflicting findings. 

Mechanisms of miRNA Dysregulation in Cancer 

 The causes of miRNA dysregulation in human cancers 
are just beginning to be elucidated. First of all, it is interest-
ing to remember that about 50% of annotated human  
miRNAs are located in particular areas of the genome called 
"fragile sites" [46], which have been associated with the ge-
nome instability proper of malignant cells [47].  

 Second, using a high-resolution array-based comparative 
genomic hybridization (aCGH) approach, some investigators 
found that a large proportion of miRNA gene-containing 
genomic loci exhibit DNA copy number alterations in ovar-
ian cancer (37.1%), breast cancer (72.8%) and melanoma 
(85.9%), suggesting that miRNA deregulation stemmed at 
the genomic level may be frequent [48].  

 Third, abnormalities of the protein machinery involved in 
miRNA biogenesis can affect the global miRNA expression 
and/ or processing and appear to affect cancer biology. For 
instance, in a study on non-small cell lung cancer (NSCLC), 
lower Dicer1 expression levels were significantly associated 
with poor tumor differentiation and shortened postoperative 
survival [49], suggesting that impaired miRNA processing 
(and thus globally decreased miRNA function) favors tumor 
aggressiveness/progression. Recently, other investigators 
performed a large-scale profiling of mammalian miRNAs in 
334 tumor samples and found a global decrease of mature 
miRNA expression in human cancers [50]. More recent evi-
dence suggests that other proteins involved in miRNA proc-
essing might play a role in cancer biology. For instance, 
Lin28, a developmentally regulated RNA binding protein, 
selectively blocks the processing of pri-let-7 miRNA in em-
bryonic cells: in particular, Lin28 was found to be necessary 
and sufficient for blocking Microprocessor-mediated cleav-
age of pri-let-7 miRNA, which identifies Lin28 as a negative 
regulator of miRNA biogenesis and suggests that Lin28 may 
play a central role in blocking miRNA-mediated differentia-
tion in stem cells and in certain cancers [51]. 

 Also mutations of tumor related miRNAs have been im-
plicated in tumor biology: in fact, both somatic and germ-
line miRNA mutations can be found in tumor specimens, are 
cancer-specific and can alter miRNA expression or function. 
For instance, in chronic lymphocytic leukemia a germ-line 
mutation of the mir-16-1-mir-15a primary precursor causes 
low levels of miRNA expression in vitro and in vivo and is 
associated with deletion of the normal allele; in the same 

study, germ-line or somatic mutations were found in 5 of 42 
sequenced microRNAs in 11 of 75 patients, while no such 
mutations were found in 160 subjects without cancer [52]. 
Moreover, the single nucleotide polymorphism (SNP) 
rs11614913 of mir-196a2 is associated with survival in indi-
viduals with lung cancer: specifically, survival is signifi-
cantly decreased in individuals who are homozygous CC at 
SNP rs11614913; the same study revealed that the 
rs11614913 SNP can affect binding of mature mir-196a2-3p 
to its target mRNA [53]. 

 Finally, the epigenetic regulation of miRNA expression 
has been recently discovered: in particular, both promoter 
methylation [54, 55] and histone acetylation [56] have been 
demonstrated to regulate cancer related miRNA expression. 
Of interest, the mechanisms of tumor suppressor miRNA 
silencing might be exploited for therapeutic purposes, as 
below discussed.  

TUMOR RELATED miRNAs AND ANTICANCER 

THERAPY 

 RNA interference is being intensively investigated as a 
tool to fight cancer by selectively inhibiting the expression of 
single known oncogenes [57, 58]. As with molecularly tar-
geted drugs, the main limitation of this approach is that tu-
mors can rely on multiple, redundant pathways for the main-
tenance of their survival/aggressiveness/chemoresistance, 
which likely accounts for most failures of current therapeutic 
regimens. The discovery of miRNAs acting as oncogenes or 
tumor suppressor genes has opened an unprecedented avenue 
in the targeted approach to cancer treatment [59-62]. In fact, 
once the biology of tumor related miRNAs is better defined, 
the use of these miRNAs as cancer targets or as anticancer 
bullets might enable researchers/clinicians to simultaneously 
target tens if not hundreds of tumor-related genes at a time, 
hopefully interrupting many pathological pathways with a 
single hit and thus leaving malignant cells with no way out 
of therapeutically induced death. 

 Depending on their role, different strategies have been 
devised to either inhibit oncogenic miRNAs or use tumor 
suppressive miRNAs for anticancer gene therapy.  

Oncogenic miRNAs as Therapeutic Targets 

 Like "conventional" protein-coding oncogenes [11], on-
cogenic miRNAs are being studied as potential therapeutic 
targets whose inhibition might contribute to kill malignant 
cells. Although other approaches have been described (e.g. 
miRNA "sponges" [RNA molecules expressed in cells from 
transgenes containing multiple, tandem binding sites to a 
microRNA of interest] [63], and interfering RNA [against 
the loop region of a given micro-RNA precursor] [64]), inhi-
bition of miRNAs is usually obtained with antisense oli-
gonucleotides (ASO), also called anti-miRNA oligonucleo-
tides (AMO) [61, 65, 66]. AMO molecules have complemen-
tary sequences to miRNA and contain chemical modifica-
tions to achieve two main goals: strong binding to the 
miRNA and stability in physiological conditions that allows 
to prolong their half-life particularly when administered in
vivo with therapeutic intent. To this aim, two types of modi-
fied oligonucleotides have been developed: 2'-O-methylation 
of RNA nucleotides (unlike double stranded small interfering 
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RNA [siRNA], they are single stranded RNA) [67] and 
locked nucleic acid (LNA) DNA nucleotides [68].  

 In human cell cultures, 2-O-methyl oligoribonucleotides 
(2-O-Me-RNA) - but not 2'-deoxyoligonucleotides - can spe-
cifically downregulate miRNAs [69]. As for RNA interfer-
ence mediated by siRNA, transfection of 2-O-Me-RNA re-
quires lipophilic agents (e.g. cationic lipids such as Lipofec-
tamine (R) or Oligofectamine (R)) to get the oligonucleotide 
inside the cells. In order to increase the cell-permeability of 
2-O-Me-RNA, cholesterol-linked AMO called "antagomirs" 
have been successfully developed to downregulate several 
mouse miRNAs in a number of mouse tissues following in-
travenous injection in vivo [70]. 

 Inhibition of oncogenic miRNAs has been shown to have 
therapeutic potential in many tumor models, not only in vitro
but also in vivo [71-75]. For instance, inhibition of mir-17-5p 
and mir-20a (but not other members of the mir-17-92 cluster) 
induces apoptosis selectively in lung cancer cells overex-
pressing mir-17-92, suggesting the possibility of an "addic-
tion" of malignant cells to these miRNAs (at least in a subset 
of lung cancers) that might be exploited for therapeutic pur-
poses [76]. Downreglation of mir-21 in cultured human he-
patocellular carcinoma (HCC) cells increases the expression 
of the PTEN tumor suppressor and decreases tumor cell pro-
liferation, migration, and invasion [41]. Moreover, inhibition 
of mir-21 (and mir-200b) sensitizes cholangiocarcinoma 
cells to the cytotoxic activity of the conventional chemothera-
peutic gemcitabine [77]. Even more importantly, in a human 
breast cancer xenograft model, downmodulation of mir-21 
inhibits tumor growth, likely by inducing re-expression of 
tumor suppressor gene TPM1 [40]. Similarly, miRNA-21 
knockdown disrupts human glioma growth in vivo and dis-
plays synergistic effects with cytotoxic agent tumor necrosis 
factor-related apoptosis inducing ligand (TRAIL) [78].  

 As a further example, inhibition of mir-221 and mir-222 
increases p27/Kip1/CDKN1B in PC3 prostate carcinoma 
cells and strongly reduces their clonogenicity in vitro. Con-
sistently, mir-221 and mir-222 knockdown is associated with 
re-expression of p27/Kip1/CDKN1B and c-KIT, which pro-
motes cell cycle arrest and tumor differentiation and ulti-
mately inhibits human melanoma growth both in vitro and in
vivo [79].  

Tumor Suppressor miRNA Gene Therapy 

 Until few years ago, the rational anticancer gene therapy 
hinged upon the substitution of the lost function of a tumor 
suppressor gene encoding a specific oncoprotein [80]. After 
the discovery of miRNAs with tumor suppressing activity, 
the arsenal of anticancer gene therapy has gained a new 
weapon capable of targeting multiple genes potentially in-
volved in cancer biology by means of a single shot [59]. 
Tumor suppressor miRNAs can be transfected in human 
cells using either modified oligonucleotides (as above re-
ported) or viral vectors (lentivirus is the preferred vector for 
stable, sustained transgenic expression). 

 Several examples are already available supporting the 
therapeutic potential of forcing the expression of tumor sup-
pressor miRNAs. In this regard, the most studied miRNAs 
are the let-7 family members. Ectopic expression of let-7 

reduces HMGA2 expression and inhibits the proliferation of 
lung cancer cells [24, 81]. Reduced proliferation is also ob-
served in Burkitt lymphoma cells transfected with let-7a, 
which is accompanied by decreased c-MYC protein expres-
sion [82]. Forced expression of let-7b in melanoma cells in
vitro downregulates the expression of cyclin-D1, cyclin-D3 
and cyclin-A, as well as cyclin-dependent kinase-4 (CDK4), 
all of which had been described to play a role in melanoma 
development: in line with the downmodulation of cell cycle 
regulators, let-7b inhibits cell cycle progression and anchor-
age-independent growth of melanoma cells [83]. 

 Remarkably, in a human breast carcinoma preclinical 
model, let-7 coding lentivirus reduces proliferation, mam-
mosphere formation, and the proportion of undifferentiated 
cells in vitro and tumor formation and metastasis in nude 
mice in vivo [21]. Analogously, in an autochthonous model 
of murine lung carcinoma, let-7g expression substantially 
reduces the tumor burden [84]. Although in its infancy, 
miRNA-based gene therapy has been proven effective in 
many other preclinical models. For instance, forced overex-
pression of mir-126 leads to decrease in adhesion, migration 
and invasion in a lung cancer cell line, which is associated 
with a decrease in the protein levels of the CRK proto-
oncogene [85]. Synthetic mir-143 and mir-145 precursors 
transiently transfected into HeLa cells suppress the growth of 
this immortal cell line derived from cervical carcinoma [28]. 
Yet, the mir-34a (1p36) and mir-34c (11q23) precursor mim-
ics induce dramatic growth inhibition in neuroblastoma cell 
lines with 1p36 hemizygous deletion: interestingly, Bcl-2 
and MYCN have been identified as mir-34a targets and 
likely mediators of the tumor suppressor phenotypic effect 
[86, 87]. Lentiviral-mediated expression of mir-146a/mir-
146b significantly downregulates nuclear factor kappa B 
(NFkB) expression and activity in breast cancer cells, which 
is associated with impaired tumor invasion and migration 
capacity relative to control cells [88]. Finally, forced expres-
sion of mir-451, which regulates the expression of multidrug 
resistance 1 gene (MDR/ABCB1), increases the sensitivity 
of breast cancer cells to doxorubicin [89], which opens a new 
avenue in the development of chemotherapy sensitizers.  

Tumor Suppressor miRNAs and Epigenetic Therapy 

 Re-expression of protein-coding tumor suppressor genes 
is a recently developed anticancer therapeutic strategy that 
has reached in some cases the clinical phase of experimenta-
tion [90]. Two main drug classes can be used to reactivate 
tumor suppressive genes and cause malignant cell death: 
demethylating agents (mainly represented by cytosine ana-
logues 5-azacytosine [azacytidine] and 2'-deoxy-5-azacyti-
dine [decitabine]) [91] and histone deacetylase inhibitors 
(e.g. trichostatin-A, SAHA, LAQ-824, depsipeptide, sodium 
butyrate, MS-275, CI-994) [92].  

 As regards tumor suppressor miRNAs, their epigenetic 
regulation has been shown by means of two main experimen-
tal models. In the first model, investigators analyze the ex-
pression profile of miRNAs in malignant cells untreated or 
exposed to chromatin-modifying drugs. For instance, in 
bladder cancer cells 17 of 313 human miRNAs are upregu-
lated by simultaneous treatment with the DNA-demethy-
lating agent, 5-aza-20-deoxycytidine (5-Aza-CdR) and the 
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histone deacetylase inhibitor 4-phenylbutyric acid (PBA) 
[93]. Interestingly, these upregulated miRNAs are quite dif-
ferent as compared to those upregulated in LD419 human 
normal fibroblasts, indicating that DNA methylation status 
and chromatin structure around miRNA genes are different 
between cancer and normal cells, although tissue-specific 
expression may not be completely ruled out. Among these 
miRNAs, mir-127 was focused on because it was greatly 
upregulated (49-fold) in malignant cells following the 5-Aza-
CdR and PBA treatment [93]: the gene encoding mir-127 is 
embedded within a CpG island and is silenced in various 
cancer cells while it is expressed in normal fibroblasts; a 
candidate target of mir-127, the proto-oncogene BCL6, is 
translationally suppressed after mir-127 upregulation by 5-
Aza-CdR and PBA treatment, suggesting that DNA demeth-
ylation and histone deacetylase inhibition may activate ex-
pression of miRNAs acting as tumor suppressors. 

 Using the second experimental model, other investigators 
have confirmed the effect of methylation on the expression 
of tumor related miRNAs. As an example, using DNMT1 
and DNMT3b knockout HCT116 colorectal cancer cells, 
some authors performed microarray profiling of 320 human 
miRNAs and found that 18 miRNAs are upregulated by >3-
fold in the DNMT1/DNMT3b double knockout HCT116 
cells [54]. In that study, one of the main targets resulted mir-
124a, which undergoes transcriptional inactivation by CpG 
island hypermethylation in human tumors from different cell 
types. Interestingly, the same investigators also functionally 
linked the epigenetic loss of mir-124a with the activation of 
cyclin D kinase 6 (CDK6), a bona fide oncogenic factor that 
phosphorylates and thus inhibits the retinoblastoma protein 
(pRB), a tumor suppressor factor: accordingly, CpG island 
hypermethylation of tumor suppressor miRNAs has been 
proposed as an important mechanism in tumorigenesis [54].  

 Following the demonstration that tumor suppressor 
miRNAs can be epigenetically silenced [73], the use of chro-
matin remodeling drugs to interfere with miRNA expression 
in a therapeutic perspective is just beginning. For instance, 
analysis of patient's primary leukemia blasts revealed that 
those carrying the t(8;21) generating AML1/ETO, the most 
common acute myeloid leukemia-associated fusion protein, 
display low levels of mir-223, a regulator of myelopoiesis 
[94]. In the same study, mir-223 was found to be a direct 
transcriptional target of AML1/ETO: in particular, by re-
cruiting chromatin remodeling enzymes at an AML1-binding 
site on the pre-mir-223 gene, AML1/ETO induces hetero-
chromatic silencing of mir-223. Importantly, demethylating 
treatment enhances mir-223 levels and restores cell differen-
tiation [94], which represents a key therapeutic objective in 
acute leukemia. 

 As a further example in the field of hematological malig-
nancies, it is well known that ABL1 is specifically activated 
in chronic myeloid leukemia as a BCR-ABL1 fusion protein 
(Philadelphia chromosome): mir-203 has been recently dem-
onstrated to target the ABL1 gene and is downmodulated in 
this type of tumor [95]. In line with the oncogenic activity of 
ABL1, re-expression of mir-203 by a combination of epige-
netic drugs (i.e. 5'-azacytidine plus 4-phenylbutyrate) re-
duces both ABL1 and BCR-ABL1 fusion protein levels and 
ultimately inhibits tumor cell proliferation in an ABL1-

dependent manner: thus, mir-203 functions as a tumor sup-
pressor, and re-expression of this microRNA might have 
therapeutic benefits in specific hematopoietic malignancies 
[95].  

FUTURE CHALLENGES 

 Although the therapeutic potential of cancer related 
miRNAs is only beginning to be explored, enough preclini-
cal evidence has already accumulated to reasonably foresee 
that in the next few years it will be possible to test the anti-
cancer activity of this molecularly targeted approach in the 
clinical setting [60, 62, 71, 74, 96]. In this regard, the an-
nouncement of the first clinical trial of SPC3649 (a LNA-
based antisense molecule against miR-122) for the treatment 
of hepatitis-C [97] is a tangible sign of the rapid progresses 
being made in the field of miRNA-based therapeutics devel-
opment. Nevertheless, we must remember that this promising 
research avenue is constellated by numerous biological and 
technical challenges.  

 As regards the former type of challenges, the complex 
biology of microRNA must be better elucidated before clini-
cal trials can be safely carried out to demonstrate the thera-
peutic potential of the miRNA-based approach in humans. In 
fact, the ever growing knowledge on the physiological roles 
played by miRNAs warrants great caution in interfering with 
their activity; in addition, as above mentioned, some tumor 
related miRNAs appear to function as both tumor suppressor 
gene and oncogenes, which highlights our incomplete know-
ledge of the network these molecules belong to. Moreover, 
the theoretical advantage of tumor suppressor miRNAs (i.e. 
the ability of each miRNA to target tens of oncogenes, as 
compared to the single gene specificity of other antisense 
strategies), is counterbalanced by safety issues raised by the 
so called "off target" effects, a phenomenon first recognized 
as a relatively infrequent lack of specificity of small interfer-
ing RNA (siRNA) molecules [98, 99]. In addition, for each 
miRNA multiple targets (tens to hundreds) are usually ex-
pected, which makes highly challenging to predict the side 
effects of therapeutic interference with the activity of tumor 
related miRNAs. These simple observations warrant the 
creation of systematic, comprehensive and continuously up-
dated biomaps depicting the upstream and downstream regu-
latory circuits oncomirs belong to, a recently started online 
project to which any researcher can contribute [16]. 

 As regards the latter type of challenges, the delivery of 
miRNA-targeting therapeutics represents the major technical 
obstacle to their implementation in the clinical setting [59, 
100, 101]. In fact both molecules inhibiting oncogenic miR-
NAs (e.g. AMO) and tumor suppressor miRNAs are instable 
in the serum and their delivery across the cell membrane is 
highly inefficient (as above mentioned). The delivery of 
AMO within human cells depends upon the combination 
with lipophilic compounds, which are characterized by an 
intrinsic toxicity: to solve this problem new carriers are be-
ing developed [102], but they are still under preclinical test-
ing and their clinical safety is to be demonstrated. On the 
other hand, tumor suppressor miRNAs are mainly delivered 
by means of viral vectors that bring the mutagenic risk 
linked to gene therapy in general [103]. In addition, some 
investigators have recently shown that overexpression of 
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miRNA mimics from adeno-associated viral vectors in mice 
could saturate the miRNA pathway and cause an otherwise 
unexpected severe liver toxicity [104].  

 Finally, the "redundancy" of miRNAs might make the 
task even more difficult: for instance, would targeting mir-17 
be sufficient or would all miRNAs of the mir-17-92 cluster 
have to be targeted? Although this issue can be at least in 
part addressed by functional studies performed in the pre-
clinical setting, the effects observed in vivo in humans might 
be quite different, as recently underscored for genetic inter-
actions [105]; as a consequence, it might be necessary to test 
multiple combinations before the therapeutic effect of the 
miRNA-based anticancer approach is demonstrated in the 
clinical setting. 
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